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Minimum dissipation rate flow with given flux
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Flow of a viscous incompressible fluid through a conduit with rigid walls is considered,
with the flux given at the entrance and exit. The velocity distribution which minimizes
the rate of energy dissipation is characterized. It is a Stokes flow with the surface
stress equal to a constant pressure at the entrance and another constant pressure at
the exit.

1. Introduction
For given flux, what velocity distribution u(x) minimizes the rate of energy

dissipation D[u], in a viscous incompressible fluid flowing through a conduit? This
question leads to a natural modification of the result of Helmholtz and Korteweg,
which applies when u(x) is given at the entrance S− and exit S+. Then the solution
is the Stokes flow which has those values at S± and vanishes on the rigid conduit
surface S1 (Batchelor 1967, p. 228).

To determine u(x) when only the flux Q is known, we begin with the definition

D[u] =

∫
V

2µ(eij [u])2 dV. (1.1)

Here V is the fluid domain, bounded by S+, S− and S1, µ is the coefficient of viscosity,
eij [u] = 1

2
(ui,j +uj,i) is the strain rate, ui is the ith component of u, and ui,j = ∂ui/∂xj .

Terms with repeated indices are summed over the three values 1, 2, 3 of those indices.
The stress tensor corresponding to u is τij [u] = 2µeij [u] − p(x)δij where p(x) is the
pressure.

An admissible velocity field is a smooth flow u(x) defined for x in V , satisfying the
conditions

ui,i(x) = 0, x in V, (1.2a)

ui(x) = 0, x in S1, (1.2b)∫
S+

uini dS = −
∫

S−

uini dS = Q. (1.2c)

In (1.2c) ni is the ith component of the unit normal to S+ or S− pointing out of V .
The dissipation minimizing u is characterized by the following theorem.

Among all admissible velocity fields, D[u] is minimized by a unique u(x) which satisfies
the equations
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τij,j [u(x)] = 0, x in V, (1.3a)

τij [u(x)]nj (x) = −p+ni(x), x in S+, (1.3b)

= −p−ni(x), x in S−. (1.3c)

In (1.3c) p+ and p− are constants.

2. Proof of theorem
Let u(x) be an admissible velocity field satisfying the Stokes equation (1.3a). Any

other admissible flow can be written as u + v, where v satisfies (1.2a), (1.2b) and∫
S+

vini dS = −
∫

S−

vini dS = 0. (2.1)

Substituting u + v into (1.1) yields

D[u + v] = D[u] + D[v] + 2

∫
V

2µeij [u]eij [v] dV. (2.2)

The definition of eij yields eij = eji so 2µeij [u]eij [v] = µeij [u](vi,j + vj,i) =
2µeij [u]vi,j . Then using vi,i = 0 and the definition of τij [u] we obtain 2µeij [u]vi,j =
τij [u]vi,j . Finally we note that τij [u]vi,j = ∂(τij [u]vi)/∂xj because τij,j [u] = 0, as (1.3a)
shows. Thus 2µeij [u]eij [v] = ∂(τij [u]vi)/∂xj , so the last term in (2.2) is the integral
of a divergence. By Gauss’ theorem we can rewrite it as a surface integral, so (2.2)
becomes

D[u + v] = D[u] + D[v] + 2

∫
S++S−

viτij [u]nj dS. (2.3)

We have used the fact that v = 0 on S1.
In order for u to minimize D, the sum of the last two terms in (2.3) must be non-

negative for every v satisfying (1.2a), (1.2b) and (2.1). If v satisfies these conditions,
so does αv for any real number α. By replacing v by αv in (2.3), with α sufficiently
small, we see that the last term in (2.3), which is linear in α, dominates D[αv] which
is quadratic in α. Therefore the last integral must be zero, for if it were not it could
be made negative by an appropriate choice of the sign of α. Thus for u to minimize
D it is necessary that for all v satisfying (1.2a), (1.2b) and (2.1),∫

S++S−

viτij [u]nj dS = 0. (2.4)

Now consider the v which vanish on S−. Then (2.4) requires that the integral of
viτij [u]nj over S+ must vanish for every v for which, by (2.1), the integral of vini

over S+ vanishes. This certainly will be the case if (1.3b) holds, for then the former
integral is p+ times the latter integral. That condition (1.3b) is also necessary can
be seen by reformulating the requirement (2.4) as follows: the function τij [u]nj must
be orthogonal to every function vi which is orthogonal to ni , so τij [u]nj must be
a multiple of ni , which is what (1.3b) states. Here orthogonality means vanishing
of the inner product defined by the integral over S+ in (2.1) and (2.4). Similarly by
considering the v which vanish on S+, we deduce (1.3c).

When (1.3b) and (1.3c) hold the integral in (2.3) vanishes, and (2.3) becomes
D[u + v] = D[u] + D[v]. Since D[v] > 0 unless v = 0, it follows that the minimum of
D[u + v] is D[u]. This proves the theorem except for uniqueness. Uniqueness follows
because the difference v between two solutions must vanish for both of them to
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minimize D, since D(v) > 0 unless v = 0. Uniqueness also follows from Theorem 5
of Keller, Rubenfeld & Molyneux (1967) in which S3 = S+ + S−.

3. Discussion
The pressure p(x) is undefined up to an additive constant which can be chosen to

make p− = 0 in (1.3c). Then in (1.3b) p+ is replaced by p+ − p−. Since the problem
for u(x) is linear, it follows that the solution is proportional to the pressure difference
p+ −p−, and therefore so is Q. Thus there is a unique pressure difference which yields
a given flux Q. Since the rate of dissipation is equal to (p+ − p−)Q, minimizing the
dissipation rate also minimizes the pressure drop for given flux.

Suppose that V is a channel parallel to the x1-axis with walls at x2 = ±h and ends
S± at x1 = ±L. Then an admissible flow is the Poiseuille flow given by

uP
1 (x2) =

3Q

4h

[
1 −

(x2

h

)2
]

, uP
2 = 0, pP (x1) = p− + (x1 + L)(p+ − p−)/2L. (3.1)

This flow satisfies (1.3a), but it does not satisfy (1.3b) or (1.3c). Instead it yields

τij [u
P ]nj = −p±ni ± 3µQ

2h3
x2δi2 at x = ±L. (3.2)

In order to correct the Poiseuille flow to make it satisfy (1.3b) and (1.3c), we must
add to it a flow which cancels the last term in (3.2) for i = 2. That term represents a
shear stress in the transverse direction, proportional to x2. The correction flow, which
can be found by separation of variables, is expressible as a sum of modes. Half of
the modes decay exponentially with distance from one end of the channel and the
other half decay exponentially with distance from the other end. The decay rates are
proportional to 1/h, so for a long channel the correction flow is localized near the
ends of the channel. The same conclusion applies to the flow in a pipe.

The preceding result shows that the minimum dissipation rate flow changes from
the Poiseuille flow in the interior of the pipe or channel, to a flow with no transverse
shear stress at the ends.
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